@article{2023-Kumar-CCRLCIB,
title = {Cascaded Compositional Residual Learning for Complex Interactive Behaviors},
author = {K. Niranjan Kumar and Irfan Essa and Sehoon Ha},
url = {https://ieeexplore.ieee.org/document/10152471},
doi = {10.1109/LRA.2023.3286171},
year = {2023},
date = {2023-06-14},
urldate = {2023-06-14},
journal = {IEEE Robotics and Automation Letters},
volume = {8},
issue = {8},
pages = {4601--4608},
abstract = {Real-world autonomous missions often require rich interaction with nearby objects, such as doors or switches, along with effective navigation. However, such complex behaviors are difficult to learn because they involve both high-level planning and low-level motor control. We present a novel framework, Cascaded Compositional Residual Learning (CCRL), which learns composite skills by recursively leveraging a library of previously learned control policies. Our framework combines multiple levels of pre-learned skills by using multiplicative skill composition and residual action learning. We also introduce a goal synthesis network and an observation selector to support combination of heterogeneous skills, each with its unique goals and observation space. Finally, we develop residual regularization for learning policies that solve a new task, while preserving the style of the motion enforced by the skill library. We show that our framework learns joint-level control policies for a diverse set of motor skills ranging from basic locomotion to complex interactive navigation, including navigating around obstacles, pushing objects, crawling under a table, pushing a door open with its leg, and holding it open while walking through it. The proposed CCRL framework leads to policies with consistent styles and lower joint torques, and successfully transfer to a real Unitree A1 robot without any additional fine-tuning.},
keywords = {IEEE, reinforcement learning, robotics},
pubstate = {published},
tppubtype = {article}
}