A searchable list of some of my publications is below. You can also access my publications from the following sites.
My ORCID is
Publications:
Harish Haresamudram, Irfan Essa, Thomas Ploetz
Assessing the State of Self-Supervised Human Activity Recognition using Wearables Journal Article
In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT), vol. 6, iss. 3, no. 116, pp. 1–47, 2022.
Abstract | Links | BibTeX | Tags: activity recognition, IMWUT, ubiquitous computing, wearable computing
@article{2022-Haresamudram-ASSHARUW,
title = {Assessing the State of Self-Supervised Human Activity Recognition using Wearables},
author = {Harish Haresamudram and Irfan Essa and Thomas Ploetz},
url = {https://dl.acm.org/doi/10.1145/3550299
https://arxiv.org/abs/2202.12938
https://arxiv.org/pdf/2202.12938
},
doi = {doi.org/10.1145/3550299},
year = {2022},
date = {2022-09-07},
urldate = {2022-09-07},
booktitle = {Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT)},
journal = {Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT)},
volume = {6},
number = {116},
issue = {3},
pages = {1–47},
publisher = {ACM},
abstract = {The emergence of self-supervised learning in the field of wearables-based human activity recognition (HAR) has opened up opportunities to tackle the most pressing challenges in the field, namely to exploit unlabeled data to derive reliable recognition systems for scenarios where only small amounts of labeled training samples can be collected. As such, self-supervision, i.e., the paradigm of 'pretrain-then-finetune' has the potential to become a strong alternative to the predominant end-to-end training approaches, let alone hand-crafted features for the classic activity recognition chain. Recently a number of contributions have been made that introduced self-supervised learning into the field of HAR, including, Multi-task self-supervision, Masked Reconstruction, CPC, and SimCLR, to name but a few. With the initial success of these methods, the time has come for a systematic inventory and analysis of the potential self-supervised learning has for the field. This paper provides exactly that. We assess the progress of self-supervised HAR research by introducing a framework that performs a multi-faceted exploration of model performance. We organize the framework into three dimensions, each containing three constituent criteria, such that each dimension captures specific aspects of performance, including the robustness to differing source and target conditions, the influence of dataset characteristics, and the feature space characteristics. We utilize this framework to assess seven state-of-the-art self-supervised methods for HAR, leading to the formulation of insights into the properties of these techniques and to establish their value towards learning representations for diverse scenarios.
},
keywords = {activity recognition, IMWUT, ubiquitous computing, wearable computing},
pubstate = {published},
tppubtype = {article}
}
Harish Haresamudram, Irfan Essa, Thomas Ploetz
Contrastive Predictive Coding for Human Activity Recognition Journal Article
In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 5, no. 2, pp. 1–26, 2021.
Abstract | Links | BibTeX | Tags: activity recognition, IMWUT, machine learning, ubiquitous computing
@article{2021-Haresamudram-CPCHAR,
title = {Contrastive Predictive Coding for Human Activity Recognition},
author = {Harish Haresamudram and Irfan Essa and Thomas Ploetz},
url = {https://doi.org/10.1145/3463506
https://arxiv.org/abs/2012.05333},
doi = {10.1145/3463506},
year = {2021},
date = {2021-06-01},
urldate = {2021-06-01},
booktitle = {Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies},
journal = {Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies},
volume = {5},
number = {2},
pages = {1--26},
abstract = {Feature extraction is crucial for human activity recognition (HAR) using body-worn movement sensors. Recently, learned representations have been used successfully, offering promising alternatives to manually engineered features. Our work focuses on effective use of small amounts of labeled data and the opportunistic exploitation of unlabeled data that are straightforward to collect in mobile and ubiquitous computing scenarios. We hypothesize and demonstrate that explicitly considering the temporality of sensor data at representation level plays an important role for effective HAR in challenging scenarios. We introduce the Contrastive Predictive Coding (CPC) framework to human activity recognition, which captures the long-term temporal structure of sensor data streams. Through a range of experimental evaluations on real-life recognition tasks, we demonstrate its effectiveness for improved HAR. CPC-based pre-training is self-supervised, and the resulting learned representations can be integrated into standard activity chains. It leads to significantly improved recognition performance when only small amounts of labeled training data are available, thereby demonstrating the practical value of our approach.},
keywords = {activity recognition, IMWUT, machine learning, ubiquitous computing},
pubstate = {published},
tppubtype = {article}
}
Kihwan Kim, Jay Summet, Thad Starner, Dan Ashbrook, M. Kapade, Irfan Essa
Localization and 3D Reconstruction of Urban Scenes Using GPS Proceedings Article
In: Proceedings of IEEE International Symposium on Wearable Computers (ISWC), pp. 11–14, IEEE Computer Society, 2008.
BibTeX | Tags: IMWUT, navigation, wearable computing
@inproceedings{2008-Kim-LRUSU,
title = {Localization and 3D Reconstruction of Urban Scenes Using GPS},
author = {Kihwan Kim and Jay Summet and Thad Starner and Dan Ashbrook and M. Kapade and Irfan Essa},
year = {2008},
date = {2008-09-01},
urldate = {2008-09-01},
booktitle = {Proceedings of IEEE International Symposium on Wearable Computers (ISWC)},
pages = {11--14},
publisher = {IEEE Computer Society},
keywords = {IMWUT, navigation, wearable computing},
pubstate = {published},
tppubtype = {inproceedings}
}
Other Publication Sites
A few more sites that aggregate research publications: Academic.edu, Bibsonomy, CiteULike, Mendeley.
Copyright/About
[Please see the Copyright Statement that may apply to the content listed here.]
This list of publications is produced by using the teachPress plugin for WordPress.