A searchable list of some of my publications is below. You can also access my publications from the following sites.
My ORCID is
Publications:
Seung Hyun Lee, Yinxiao Li, Junjie Ke, Innfarn Yoo, Han Zhang, Jiahui Yu, Qifei Wang, Fei Deng, Glenn Entis, Junfeng He, Gang Li, Sangpil Kim, Irfan Essa, Feng Yang
Parrot: Pareto-optimal multi-reward reinforcement learning framework for text-to-image generation (inproceedings) Proceedings Article
In: Proceedings of European Conference on Computer Vision (ECCV) , 2024.
Abstract | Links | BibTeX | Tags: arXiv, computer vision, ECCV, generative AI, google, reinforcement learning
@inproceedings{2024-Lee-PPMRLFTG,
title = {Parrot: Pareto-optimal multi-reward reinforcement learning framework for text-to-image generation (inproceedings)},
author = {Seung Hyun Lee and Yinxiao Li and Junjie Ke and Innfarn Yoo and Han Zhang and Jiahui Yu and Qifei Wang and Fei Deng and Glenn Entis and Junfeng He and Gang Li and Sangpil Kim and Irfan Essa and Feng Yang
},
url = {https://arxiv.org/abs/2401.05675
https://arxiv.org/pdf/2401.05675
https://dl.acm.org/doi/10.1007/978-3-031-72920-1_26},
doi = {10.48550/arXiv.2401.05675},
year = {2024},
date = {2024-07-25},
urldate = {2024-07-25},
booktitle = {Proceedings of European Conference on Computer Vision (ECCV)
},
abstract = {Recent works have demonstrated that using reinforcement learning (RL) with multiple quality rewards can improve the quality of generated images in text-to-image (T2I) generation. However, manually adjusting reward weights poses challenges and may cause over-optimization in certain metrics. To solve this, we propose Parrot, which addresses the issue through multi-objective optimization and introduces an effective multi-reward optimization strategy to approximate Pareto optimal. Utilizing batch-wise Pareto optimal selection, Parrot automatically identifies the optimal trade-off among different rewards. We use the novel multi-reward optimization algorithm to jointly optimize the T2I model and a prompt expansion network, resulting in significant improvement of image quality and also allow to control the trade-off of different rewards using a reward related prompt during inference. Furthermore, we introduce original prompt-centered guidance at inference time, ensuring fidelity to user input after prompt expansion. Extensive experiments and a user study validate the superiority of Parrot over several baselines across various quality criteria, including aesthetics, human preference, text-image alignment, and image sentiment.
},
keywords = {arXiv, computer vision, ECCV, generative AI, google, reinforcement learning},
pubstate = {published},
tppubtype = {inproceedings}
}
Agrim Gupta, Lijun Yu, Kihyuk Sohn, Xiuye Gu, Meera Hahn, Li Fei-Fei, Irfan Essa, Lu Jiang, José Lezama
Photorealistic Video Generation with Diffusion Models Proceedings Article
In: European Conference on Computer Vision (ECCV), 2024.
Abstract | Links | BibTeX | Tags: arXiv, computational video, computer vision, generative AI, google
@inproceedings{2024-Gupta-PVGWDM,
title = {Photorealistic Video Generation with Diffusion Models},
author = {Agrim Gupta and Lijun Yu and Kihyuk Sohn and Xiuye Gu and Meera Hahn and Li Fei-Fei and Irfan Essa and Lu Jiang and José Lezama
},
url = {https://walt-video-diffusion.github.io/
https://arxiv.org/abs/2312.06662
https://arxiv.org/pdf/2312.06662
},
doi = {10.48550/arXiv.2312.06662},
year = {2024},
date = {2024-07-25},
urldate = {2024-07-25},
booktitle = {European Conference on Computer Vision (ECCV)},
abstract = {We present W.A.L.T, a transformer-based approach for photorealistic video generation via diffusion modeling. Our approach has two key design decisions. First, we use a causal encoder to jointly compress images and videos within a unified latent space, enabling training and generation across modalities. Second, for memory and training efficiency, we use a window attention architecture tailored for joint spatial and spatiotemporal generative modeling. Taken together these design decisions enable us to achieve state-of-the-art performance on established video (UCF-101 and Kinetics-600) and image (ImageNet) generation benchmarks without using classifier free guidance. Finally, we also train a cascade of three models for the task of text-to-video generation consisting of a base latent video diffusion model, and two video super-resolution diffusion models to generate videos of 512×896 resolution at 8 frames per second.},
keywords = {arXiv, computational video, computer vision, generative AI, google},
pubstate = {published},
tppubtype = {inproceedings}
}
Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama, Jonathan Huang, Grant Schindler, Rachel Hornung, Vighnesh Birodkar, Jimmy Yan, Ming-Chang Chiu, Krishna Somandepalli, Hassan Akbari, Yair Alon, Yong Cheng, Josh Dillon, Agrim Gupta, Meera Hahn, Anja Hauth, David Hendon, Alonso Martinez, David Minnen, Mikhail Sirotenko, Kihyuk Sohn, Xuan Yang, Hartwig Adam, Ming-Hsuan Yang, Irfan Essa, Huisheng Wang, David A. Ross, Bryan Seybold, Lu Jiang
VideoPoet: A large language model for zero-shot video generation Best Paper Proceedings Article
In: Proceedings of International Conference on Machine Learning (ICML), 2024.
Abstract | Links | BibTeX | Tags: arXiv, best paper award, computational video, computer vision, generative AI, google, ICML
@inproceedings{2024-Kondratyuk-VLLMZVG,
title = {VideoPoet: A large language model for zero-shot video generation},
author = {Dan Kondratyuk and Lijun Yu and Xiuye Gu and José Lezama and Jonathan Huang and Grant Schindler and Rachel Hornung and Vighnesh Birodkar and Jimmy Yan and Ming-Chang Chiu and Krishna Somandepalli and Hassan Akbari and Yair Alon and Yong Cheng and Josh Dillon and Agrim Gupta and Meera Hahn and Anja Hauth and David Hendon and Alonso Martinez and David Minnen and Mikhail Sirotenko and Kihyuk Sohn and Xuan Yang and Hartwig Adam and Ming-Hsuan Yang and Irfan Essa and Huisheng Wang and David A. Ross and Bryan Seybold and Lu Jiang
},
url = {https://arxiv.org/pdf/2312.14125
https://arxiv.org/abs/2312.14125
https://sites.research.google/videopoet/},
doi = {10.48550/arXiv.2312.14125},
year = {2024},
date = {2024-07-23},
urldate = {2024-07-23},
booktitle = {Proceedings of International Conference on Machine Learning (ICML)},
abstract = {We present VideoPoet, a language model capable of synthesizing high-quality video, with matching audio, from a large variety of conditioning signals. VideoPoet employs a decoder-only transformer architecture that processes multimodal inputs -- including images, videos, text, and audio. The training protocol follows that of Large Language Models (LLMs), consisting of two stages: pretraining and task-specific adaptation. During pretraining, VideoPoet incorporates a mixture of multimodal generative objectives within an autoregressive Transformer framework. The pretrained LLM serves as a foundation that can be adapted for a range of video generation tasks. We present empirical results demonstrating the model's state-of-the-art capabilities in zero-shot video generation, specifically highlighting VideoPoet's ability to generate high-fidelity motions. Project page: http://sites.research.google/videopoet/
},
keywords = {arXiv, best paper award, computational video, computer vision, generative AI, google, ICML},
pubstate = {published},
tppubtype = {inproceedings}
}
Lijun Yu, José Lezama, Nitesh B. Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, Alexander G. Hauptmann, Boqing Gong, Ming-Hsuan Yang, Irfan Essa, David A. Ross, Lu Jiang
Language Model Beats Diffusion -- Tokenizer is Key to Visual Generation Proceedings Article
In: Proceedings of International Conference on Learning Representations (ICLR) , 2024.
Abstract | Links | BibTeX | Tags: AI, arXiv, computer vision, generative AI, google, ICLR
@inproceedings{2024-Yu-LMBDVG,
title = {Language Model Beats Diffusion -- Tokenizer is Key to Visual Generation},
author = {Lijun Yu and José Lezama and Nitesh B. Gundavarapu and Luca Versari and Kihyuk Sohn and David Minnen and Yong Cheng and Vighnesh Birodkar and Agrim Gupta and Xiuye Gu and Alexander G. Hauptmann and Boqing Gong and Ming-Hsuan Yang and Irfan Essa and David A. Ross and Lu Jiang},
url = {https://arxiv.org/abs/2310.05737
https://arxiv.org/pdf/2310.05737},
doi = { https://doi.org/10.48550/arXiv.2310.05737},
year = {2024},
date = {2024-05-14},
urldate = {2024-05-14},
booktitle = {Proceedings of International Conference on Learning Representations (ICLR)
},
abstract = {While Large Language Models (LLMs) are the dominant models for generative tasks in language, they do not perform as well as diffusion models on image and video generation. To effectively use LLMs for visual generation, one crucial component is the visual tokenizer that maps pixel-space inputs to discrete tokens appropriate for LLM learning. In this paper, we introduce MAGVIT-v2, a video tokenizer designed to generate concise and expressive tokens for both videos and images using a common token vocabulary. Equipped with this new tokenizer, we show that LLMs outperform diffusion models on standard image and video generation benchmarks including ImageNet and Kinetics. In addition, we demonstrate that our tokenizer surpasses the previously top-performing video tokenizer on two more tasks: (1) video compression comparable to the next-generation video codec (VCC) according to human evaluations, and (2) learning effective representations for action recognition tasks.
},
keywords = {AI, arXiv, computer vision, generative AI, google, ICLR},
pubstate = {published},
tppubtype = {inproceedings}
}
Kihyuk Sohn, Nataniel Ruiz, Kimin Lee, Daniel Castro Chin, Irina Blok, Huiwen Chang, Jarred Barber, Lu Jiang, Glenn Entis, Yuanzhen Li, Yuan Hao, Irfan Essa, Michael Rubinstein, Dilip Krishnan
StyleDrop: Text-to-Image Generation in Any Style Proceedings Article
In: Advances in Neural Information Processing Systems (NeurIPS), 2023.
Abstract | Links | BibTeX | Tags: arXiv, computer vision, generative AI, google, NeurIPS
@inproceedings{2023-Sohn-STGS,
title = {StyleDrop: Text-to-Image Generation in Any Style},
author = {Kihyuk Sohn and Nataniel Ruiz and Kimin Lee and Daniel Castro Chin and Irina Blok and Huiwen Chang and Jarred Barber and Lu Jiang and Glenn Entis and Yuanzhen Li and Yuan Hao and Irfan Essa and Michael Rubinstein and Dilip Krishnan},
url = {https://arxiv.org/abs/2306.00983
https://openreview.net/forum?id=KoaFh16uOc
https://proceedings.neurips.cc/paper_files/paper/2023/hash/d33b177b69425e7685b0b1c05bd2a5e4-Abstract-Conference.html},
doi = {10.48550/arXiv.2306.00983},
year = {2023},
date = {2023-12-11},
urldate = {2023-12-11},
booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
abstract = {Pre-trained large text-to-image models synthesize impressive images with an appropriate use of text prompts. However, ambiguities inherent in natural language and out-of-distribution effects make it hard to synthesize image styles, that leverage a specific design pattern, texture or material. In this paper, we introduce StyleDrop, a method that enables the synthesis of images that faithfully follow a specific style using a text-to-image model. The proposed method is extremely versatile and captures nuances and details of a user-provided style, such as color schemes, shading, design patterns, and local and global effects. It efficiently learns a new style by fine-tuning very few trainable parameters (less than 1% of total model parameters) and improving the quality via iterative training with either human or automated feedback. Better yet, StyleDrop is able to deliver impressive results even when the user supplies only a single image that specifies the desired style. An extensive study shows that, for the task of style tuning text-to-image models, StyleDrop implemented on Muse convincingly outperforms other methods, including DreamBooth and textual inversion on Imagen or Stable Diffusion. More results are available at our project website: this https URL},
howpublished = {arXiv:2306.00983},
keywords = {arXiv, computer vision, generative AI, google, NeurIPS},
pubstate = {published},
tppubtype = {inproceedings}
}
Nikolai Warner, Meera Hahn, Jonathan Huang, Irfan Essa, Vighnesh Birodkar
Text and Click inputs for unambiguous open vocabulary instance segmentation Proceedings Article
In: Proeedings of British Conference for Machine Vision (BMVC), 2023.
Abstract | Links | BibTeX | Tags: arXiv, BMVC, computer vision, google, image segmentation
@inproceedings{2023-Warner-TACIFUOVIS,
title = {Text and Click inputs for unambiguous open vocabulary instance segmentation},
author = {Nikolai Warner and Meera Hahn and Jonathan Huang and Irfan Essa and Vighnesh Birodkar},
url = {https://doi.org/10.48550/arXiv.2311.14822
https://arxiv.org/abs/2311.14822
https://arxiv.org/pdf/2311.14822.pdf},
doi = {arXiv.2311.14822},
year = {2023},
date = {2023-11-24},
urldate = {2023-11-24},
booktitle = {Proeedings of British Conference for Machine Vision (BMVC)},
abstract = {Segmentation localizes objects in an image on a fine-grained per-pixel scale. Segmentation benefits by humans-in-the-loop to provide additional input of objects to segment using a combination of foreground or background clicks. Tasks include photoediting or novel dataset annotation, where human annotators leverage an existing segmentation model instead of drawing raw pixel level annotations. We propose a new segmentation process, Text + Click segmentation, where a model takes as input an image, a text phrase describing a class to segment, and a single foreground click specifying the instance to segment. Compared to previous approaches, we leverage open-vocabulary image-text models to support a wide-range of text prompts. Conditioning segmentations on text prompts improves the accuracy of segmentations on novel or unseen classes. We demonstrate that the combination of a single user-specified foreground click and a text prompt allows a model to better disambiguate overlapping or co-occurring semantic categories, such as "tie", "suit", and "person". We study these results across common segmentation datasets such as refCOCO, COCO, VOC, and OpenImages. Source code available here.
},
keywords = {arXiv, BMVC, computer vision, google, image segmentation},
pubstate = {published},
tppubtype = {inproceedings}
}
Dina Bashkirova, José Lezama, Kihyuk Sohn, Kate Saenko, Irfan Essa
MaskSketch: Unpaired Structure-guided Masked Image Generation Proceedings Article
In: IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR), 2023.
Abstract | Links | BibTeX | Tags: computer vision, CVPR, generative AI, generative media, google
@inproceedings{2023-Bashkirova-MUSMIG,
title = {MaskSketch: Unpaired Structure-guided Masked Image Generation},
author = { Dina Bashkirova and José Lezama and Kihyuk Sohn and Kate Saenko and Irfan Essa},
url = {https://arxiv.org/abs/2302.05496
https://openaccess.thecvf.com/content/CVPR2023/papers/Bashkirova_MaskSketch_Unpaired_Structure-Guided_Masked_Image_Generation_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/supplemental/Bashkirova_MaskSketch_Unpaired_Structure-Guided_CVPR_2023_supplemental.pdf},
doi = {10.48550/ARXIV.2302.05496},
year = {2023},
date = {2023-06-01},
urldate = {2023-06-01},
booktitle = {IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR)},
abstract = {Recent conditional image generation methods produce images of remarkable diversity, fidelity and realism. However, the majority of these methods allow conditioning only on labels or text prompts, which limits their level of control over the generation result. In this paper, we introduce MaskSketch, an image generation method that allows spatial conditioning of the generation result using a guiding sketch as an extra conditioning signal during sampling. MaskSketch utilizes a pre-trained masked generative transformer, requiring no model training or paired supervision, and works with input sketches of different levels of abstraction. We show that intermediate self-attention maps of a masked generative transformer encode important structural information of the input image, such as scene layout and object shape, and we propose a novel sampling method based on this observation to enable structure-guided generation. Our results show that MaskSketch achieves high image realism and fidelity to the guiding structure. Evaluated on standard benchmark datasets, MaskSketch outperforms state-of-the-art methods for sketch-to-image translation, as well as unpaired image-to-image translation approaches.},
keywords = {computer vision, CVPR, generative AI, generative media, google},
pubstate = {published},
tppubtype = {inproceedings}
}
Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G. Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, Lu Jiang
MAGVIT: Masked Generative Video Transformer Proceedings Article
In: IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR), 2023.
Abstract | Links | BibTeX | Tags: computational video, computer vision, CVPR, generative AI, generative media, google
@inproceedings{2023-Yu-MMGVT,
title = {MAGVIT: Masked Generative Video Transformer},
author = {Lijun Yu and Yong Cheng and Kihyuk Sohn and José Lezama and Han Zhang and Huiwen Chang and Alexander G. Hauptmann and Ming-Hsuan Yang and Yuan Hao and Irfan Essa and Lu Jiang},
url = {https://arxiv.org/abs/2212.05199
https://magvit.cs.cmu.edu/
https://openaccess.thecvf.com/content/CVPR2023/papers/Yu_MAGVIT_Masked_Generative_Video_Transformer_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/supplemental/Yu_MAGVIT_Masked_Generative_CVPR_2023_supplemental.pdf},
doi = {10.48550/ARXIV.2212.05199},
year = {2023},
date = {2023-06-01},
urldate = {2023-06-01},
booktitle = {IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR)},
abstract = {We introduce the MAsked Generative VIdeo Transformer, MAGVIT, to tackle various video synthesis tasks with a single model. We introduce a 3D tokenizer to quantize a video into spatial-temporal visual tokens and propose an embedding method for masked video token modeling to facilitate multi-task learning. We conduct extensive experiments to demonstrate the quality, efficiency, and flexibility of MAGVIT. Our experiments show that (i) MAGVIT performs favorably against state-of-the-art approaches and establishes the best-published FVD on three video generation benchmarks, including the challenging Kinetics-600. (ii) MAGVIT outperforms existing methods in inference time by two orders of magnitude against diffusion models and by 60x against autoregressive models. (iii) A single MAGVIT model supports ten diverse generation tasks and generalizes across videos from different visual domains. The source code and trained models will be released to the public at this https URL.},
keywords = {computational video, computer vision, CVPR, generative AI, generative media, google},
pubstate = {published},
tppubtype = {inproceedings}
}
Kihyuk Sohn, Yuan Hao, José Lezama, Luisa Polania, Huiwen Chang, Han Zhang, Irfan Essa, Lu Jiang
Visual Prompt Tuning for Generative Transfer Learning Proceedings Article
In: IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR), 2023.
Abstract | Links | BibTeX | Tags: computer vision, CVPR, generative AI, generative media, google
@inproceedings{2022-Sohn-VPTGTL,
title = {Visual Prompt Tuning for Generative Transfer Learning},
author = {Kihyuk Sohn and Yuan Hao and José Lezama and Luisa Polania and Huiwen Chang and Han Zhang and Irfan Essa and Lu Jiang},
url = {https://arxiv.org/abs/2210.00990
https://openaccess.thecvf.com/content/CVPR2023/papers/Sohn_Visual_Prompt_Tuning_for_Generative_Transfer_Learning_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/supplemental/Sohn_Visual_Prompt_Tuning_CVPR_2023_supplemental.pdf},
doi = {10.48550/ARXIV.2210.00990},
year = {2023},
date = {2023-06-01},
urldate = {2023-06-01},
booktitle = {IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR)},
abstract = {Transferring knowledge from an image synthesis model trained on a large dataset is a promising direction for learning generative image models from various domains efficiently. While previous works have studied GAN models, we present a recipe for learning vision transformers by generative knowledge transfer. We base our framework on state-of-the-art generative vision transformers that represent an image as a sequence of visual tokens to the autoregressive or non-autoregressive transformers. To adapt to a new domain, we employ prompt tuning, which prepends learnable tokens called prompt to the image token sequence, and introduce a new prompt design for our task. We study on a variety of visual domains, including visual task adaptation benchmark~citezhai2019large, with varying amount of training images, and show effectiveness of knowledge transfer and a significantly better image generation quality over existing works.},
keywords = {computer vision, CVPR, generative AI, generative media, google},
pubstate = {published},
tppubtype = {inproceedings}
}
Kihyuk Sohn, Albert Shaw, Yuan Hao, Han Zhang, Luisa Polania, Huiwen Chang, Lu Jiang, Irfan Essa
Learning Disentangled Prompts for Compositional Image Synthesis Technical Report
2023.
Abstract | Links | BibTeX | Tags: arXiv, computer vision, generative AI, google, prompt engineering
@techreport{2023-Sohn-LDPCIS,
title = {Learning Disentangled Prompts for Compositional Image Synthesis},
author = {Kihyuk Sohn and Albert Shaw and Yuan Hao and Han Zhang and Luisa Polania and Huiwen Chang and Lu Jiang and Irfan Essa},
url = {https://arxiv.org/abs/2306.00763},
doi = { https://doi.org/10.48550/arXiv.2306.00763},
year = {2023},
date = {2023-06-01},
urldate = {2023-06-01},
abstract = {We study domain-adaptive image synthesis, the problem of teaching pretrained image generative models a new style or concept from as few as one image to synthesize novel images, to better understand the compositional image synthesis. We present a framework that leverages a pre-trained class-conditional generation model and visual prompt tuning. Specifically, we propose a novel source class distilled visual prompt that learns disentangled prompts of semantic (e.g., class) and domain (e.g., style) from a few images. Learned domain prompt is then used to synthesize images of any classes in the style of target domain. We conduct studies on various target domains with the number of images ranging from one to a few to many, and show qualitative results which show the compositional generalization of our method. Moreover, we show that our method can help improve zero-shot domain adaptation classification accuracy.
},
howpublished = {arXiv:2306.00763 },
keywords = {arXiv, computer vision, generative AI, google, prompt engineering},
pubstate = {published},
tppubtype = {techreport}
}
José Lezama, Tim Salimans, Lu Jiang, Huiwen Chang, Jonathan Ho, Irfan Essa
Discrete Predictor-Corrector Diffusion Models for Image Synthesis Proceedings Article
In: International Conference on Learning Representations (ICLR), 2023.
Abstract | Links | BibTeX | Tags: computer vision, generative AI, generative media, google, ICLR, machine learning
@inproceedings{2023-Lezama-DPDMIS,
title = {Discrete Predictor-Corrector Diffusion Models for Image Synthesis},
author = {José Lezama and Tim Salimans and Lu Jiang and Huiwen Chang and Jonathan Ho and Irfan Essa},
url = {https://openreview.net/forum?id=VM8batVBWvg},
year = {2023},
date = {2023-05-01},
urldate = {2023-05-01},
booktitle = {International Conference on Learning Representations (ICLR)},
abstract = {We introduce Discrete Predictor-Corrector diffusion models (DPC), extending predictor-corrector samplers in Gaussian diffusion models to the discrete case. Predictor-corrector samplers are a class of samplers for diffusion models, which improve on ancestral samplers by correcting the sampling distribution of intermediate diffusion states using MCMC methods. In DPC, the Langevin corrector, which does not have a direct counterpart in discrete space, is replaced with a discrete MCMC transition defined by a learned corrector kernel. The corrector kernel is trained to make the correction steps achieve asymptotic convergence, in distribution, to the correct marginal of the intermediate diffusion states. Equipped with DPC, we revisit recent transformer-based non-autoregressive generative models through the lens of discrete diffusion, and find that DPC can alleviate the compounding decoding error due to the parallel sampling of visual tokens. Our experiments show that DPC improves upon existing discrete latent space models for class-conditional image generation on ImageNet, and outperforms continuous diffusion models and GANs, according to standard metrics and user preference studies},
keywords = {computer vision, generative AI, generative media, google, ICLR, machine learning},
pubstate = {published},
tppubtype = {inproceedings}
}
Erik Wijmans, Manolis Savva, Irfan Essa, Stefan Lee, Ari S. Morcos, Dhruv Batra
Emergence of Maps in the Memories of Blind Navigation Agents Best Paper Proceedings Article
In: Proceedings of International Conference on Learning Representations (ICLR), 2023.
Abstract | Links | BibTeX | Tags: awards, best paper award, computer vision, google, ICLR, machine learning, robotics
@inproceedings{2023-Wijmans-EMMBNA,
title = {Emergence of Maps in the Memories of Blind Navigation Agents},
author = {Erik Wijmans and Manolis Savva and Irfan Essa and Stefan Lee and Ari S. Morcos and Dhruv Batra},
url = {https://arxiv.org/abs/2301.13261
https://wijmans.xyz/publication/eom/
https://openreview.net/forum?id=lTt4KjHSsyl
https://blog.iclr.cc/2023/03/21/announcing-the-iclr-2023-outstanding-paper-award-recipients/},
doi = {10.48550/ARXIV.2301.13261},
year = {2023},
date = {2023-05-01},
urldate = {2023-05-01},
booktitle = {Proceedings of International Conference on Learning Representations (ICLR)},
abstract = {Animal navigation research posits that organisms build and maintain internal spatial representations, or maps, of their environment. We ask if machines -- specifically, artificial intelligence (AI) navigation agents -- also build implicit (or 'mental') maps. A positive answer to this question would (a) explain the surprising phenomenon in recent literature of ostensibly map-free neural-networks achieving strong performance, and (b) strengthen the evidence of mapping as a fundamental mechanism for navigation by intelligent embodied agents, whether they be biological or artificial. Unlike animal navigation, we can judiciously design the agent's perceptual system and control the learning paradigm to nullify alternative navigation mechanisms. Specifically, we train 'blind' agents -- with sensing limited to only egomotion and no other sensing of any kind -- to perform PointGoal navigation ('go to Δ x, Δ y') via reinforcement learning. Our agents are composed of navigation-agnostic components (fully-connected and recurrent neural networks), and our experimental setup provides no inductive bias towards mapping. Despite these harsh conditions, we find that blind agents are (1) surprisingly effective navigators in new environments (~95% success); (2) they utilize memory over long horizons (remembering ~1,000 steps of past experience in an episode); (3) this memory enables them to exhibit intelligent behavior (following walls, detecting collisions, taking shortcuts); (4) there is emergence of maps and collision detection neurons in the representations of the environment built by a blind agent as it navigates; and (5) the emergent maps are selective and task dependent (e.g. the agent 'forgets' exploratory detours). Overall, this paper presents no new techniques for the AI audience, but a surprising finding, an insight, and an explanation.},
keywords = {awards, best paper award, computer vision, google, ICLR, machine learning, robotics},
pubstate = {published},
tppubtype = {inproceedings}
}
Yi-Hao Peng, Peggy Chi, Anjuli Kannan, Meredith Morris, Irfan Essa
Slide Gestalt: Automatic Structure Extraction in Slide Decks for Non-Visual Access Proceedings Article
In: ACM Symposium on User Interface Software and Technology (UIST), 2023.
Abstract | Links | BibTeX | Tags: accessibility, CHI, google, human-computer interaction
@inproceedings{2023-Peng-SGASESDNA,
title = {Slide Gestalt: Automatic Structure Extraction in Slide Decks for Non-Visual Access},
author = {Yi-Hao Peng and Peggy Chi and Anjuli Kannan and Meredith Morris and Irfan Essa},
url = {https://research.google/pubs/pub52182/
https://dl.acm.org/doi/fullHtml/10.1145/3544548.3580921
https://doi.org/10.1145/3544548.3580921
https://www.youtube.com/watch?v=pK08aMRx4qo},
year = {2023},
date = {2023-04-23},
urldate = {2023-04-23},
booktitle = {ACM Symposium on User Interface Software and Technology (UIST)},
abstract = {Presentation slides commonly use visual patterns for structural navigation, such as titles, dividers, and build slides. However, screen readers do not capture such intention, making it time-consuming and less accessible for blind and visually impaired (BVI) users to linearly consume slides with repeated content. We present Slide Gestalt, an automatic approach that identifies the hierarchical structure in a slide deck. Slide Gestalt computes the visual and textual correspondences between slides to generate hierarchical groupings. Readers can navigate the slide deck from the higher-level section overview to the lower-level description of a slide group or individual elements interactively with our UI. We derived side consumption and authoring practices from interviews with BVI readers and sighted creators and an analysis of 100 decks. We performed our pipeline with 50 real-world slide decks and a large dataset. Feedback from eight BVI participants showed that Slide Gestalt helped navigate a slide deck by anchoring content more efficiently, compared to using accessible slides.},
keywords = {accessibility, CHI, google, human-computer interaction},
pubstate = {published},
tppubtype = {inproceedings}
}
Tianhao Zhang, Weilong Yang, Honglak Lee, Hung-Yu Tseng, Irfan Essa, Lu Jiang
Image manipulation by text instruction Patent
2023.
Abstract | Links | BibTeX | Tags: content creation, generative AI, google, media generation, patents
@patent{2023-Zhang-IMTI,
title = {Image manipulation by text instruction},
author = {Tianhao Zhang and Weilong Yang and Honglak Lee and Hung-Yu Tseng and Irfan Essa and Lu Jiang},
url = {https://patents.google.com/patent/US11562518},
year = {2023},
date = {2023-01-01},
urldate = {2023-01-01},
abstract = {A method for generating an output image from an input image and an input text instruction that specifies a location and a modification of an edit applied to the input image using a neural network is described. The neural network includes an image encoder, an image decoder, and an instruction attention network. The method includes receiving the input image and the input text instruction; extracting, from the input image, an input image feature that represents features of the input image using the image encoder; generating a spatial feature and a modification feature from the input text instruction using the instruction attention network; generating an edited image feature from the input image feature, the spatial feature and the modification feature; and generating the output image from the edited image feature using the image decoder.},
howpublished = {US Patent # US11562518},
keywords = {content creation, generative AI, google, media generation, patents},
pubstate = {published},
tppubtype = {patent}
}
José Lezama, Huiwen Chang, Lu Jiang, Irfan Essa
Improved Masked Image Generation with Token-Critic Proceedings Article
In: European Conference on Computer Vision (ECCV), arXiv, 2022, ISBN: 978-3-031-20050-2.
Abstract | Links | BibTeX | Tags: computer vision, ECCV, generative AI, generative media, google
@inproceedings{2022-Lezama-IMIGWT,
title = {Improved Masked Image Generation with Token-Critic},
author = {José Lezama and Huiwen Chang and Lu Jiang and Irfan Essa},
url = {https://arxiv.org/abs/2209.04439
https://rdcu.be/c61MZ},
doi = {10.1007/978-3-031-20050-2_5},
isbn = {978-3-031-20050-2},
year = {2022},
date = {2022-10-28},
urldate = {2022-10-28},
booktitle = {European Conference on Computer Vision (ECCV)},
volume = {13683},
publisher = {arXiv},
abstract = {Non-autoregressive generative transformers recently demonstrated impressive image generation performance, and orders of magnitude faster sampling than their autoregressive counterparts. However, optimal parallel sampling from the true joint distribution of visual tokens remains an open challenge. In this paper we introduce Token-Critic, an auxiliary model to guide the sampling of a non-autoregressive generative transformer. Given a masked-and-reconstructed real image, the Token-Critic model is trained to distinguish which visual tokens belong to the original image and which were sampled by the generative transformer. During non-autoregressive iterative sampling, Token-Critic is used to select which tokens to accept and which to reject and resample. Coupled with Token-Critic, a state-of-the-art generative transformer significantly improves its performance, and outperforms recent diffusion models and GANs in terms of the trade-off between generated image quality and diversity, in the challenging class-conditional ImageNet generation.},
keywords = {computer vision, ECCV, generative AI, generative media, google},
pubstate = {published},
tppubtype = {inproceedings}
}
Xiang Kong, Lu Jiang, Huiwen Chang, Han Zhang, Yuan Hao, Haifeng Gong, Irfan Essa
BLT: Bidirectional Layout Transformer for Controllable Layout Generation Proceedings Article
In: European Conference on Computer Vision (ECCV), 2022, ISBN: 978-3-031-19789-5.
Abstract | Links | BibTeX | Tags: computer vision, ECCV, generative AI, generative media, google, vision transformer
@inproceedings{2022-Kong-BLTCLG,
title = {BLT: Bidirectional Layout Transformer for Controllable Layout Generation},
author = {Xiang Kong and Lu Jiang and Huiwen Chang and Han Zhang and Yuan Hao and Haifeng Gong and Irfan Essa},
url = {https://arxiv.org/abs/2112.05112
https://rdcu.be/c61AE},
doi = {10.1007/978-3-031-19790-1_29},
isbn = {978-3-031-19789-5},
year = {2022},
date = {2022-10-25},
urldate = {2022-10-25},
booktitle = {European Conference on Computer Vision (ECCV)},
volume = {13677},
abstract = {Creating visual layouts is a critical step in graphic design. Automatic generation of such layouts is essential for scalable and diverse visual designs. To advance conditional layout generation, we introduce BLT, a bidirectional layout transformer. BLT differs from previous work on transformers in adopting non-autoregressive transformers. In training, BLT learns to predict the masked attributes by attending to surrounding attributes in two directions. During inference, BLT first generates a draft layout from the input and then iteratively refines it into a high-quality layout by masking out low-confident attributes. The masks generated in both training and inference are controlled by a new hierarchical sampling policy. We verify the proposed model on six benchmarks of diverse design tasks. Experimental results demonstrate two benefits compared to the state-of-the-art layout transformer models. First, our model empowers layout transformers to fulfill controllable layout generation. Second, it achieves up to 10x speedup in generating a layout at inference time than the layout transformer baseline. Code is released at https://shawnkx.github.io/blt.},
keywords = {computer vision, ECCV, generative AI, generative media, google, vision transformer},
pubstate = {published},
tppubtype = {inproceedings}
}
Peggy Chi, Tao Dong, Christian Frueh, Brian Colonna, Vivek Kwatra, Irfan Essa
Synthesis-Assisted Video Prototyping From a Document Proceedings Article
In: Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology, pp. 1–10, 2022.
Abstract | Links | BibTeX | Tags: computational video, generative media, google, human-computer interaction, UIST, video editing
@inproceedings{2022-Chi-SVPFD,
title = {Synthesis-Assisted Video Prototyping From a Document},
author = {Peggy Chi and Tao Dong and Christian Frueh and Brian Colonna and Vivek Kwatra and Irfan Essa},
url = {https://research.google/pubs/pub51631/
https://dl.acm.org/doi/abs/10.1145/3526113.3545676},
doi = {10.1145/3526113.3545676},
year = {2022},
date = {2022-10-01},
urldate = {2022-10-01},
booktitle = {Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology},
pages = {1--10},
abstract = {Video productions commonly start with a script, especially for talking head videos that feature a speaker narrating to the camera. When the source materials come from a written document -- such as a web tutorial, it takes iterations to refine content from a text article to a spoken dialogue, while considering visual compositions in each scene. We propose Doc2Video, a video prototyping approach that converts a document to interactive scripting with a preview of synthetic talking head videos. Our pipeline decomposes a source document into a series of scenes, each automatically creating a synthesized video of a virtual instructor. Designed for a specific domain -- programming cookbooks, we apply visual elements from the source document, such as a keyword, a code snippet or a screenshot, in suitable layouts. Users edit narration sentences, break or combine sections, and modify visuals to prototype a video in our Editing UI. We evaluated our pipeline with public programming cookbooks. Feedback from professional creators shows that our method provided a reasonable starting point to engage them in interactive scripting for a narrated instructional video.},
keywords = {computational video, generative media, google, human-computer interaction, UIST, video editing},
pubstate = {published},
tppubtype = {inproceedings}
}
Chengzhi Mao, Lu Jiang, Mostafa Dehghani, Carl Vondrick, Rahul Sukthankar, Irfan Essa
Discrete Representations Strengthen Vision Transformer Robustness Proceedings Article
In: Proceedings of International Conference on Learning Representations (ICLR), 2022.
Abstract | Links | BibTeX | Tags: computer vision, google, machine learning, vision transformer
@inproceedings{2022-Mao-DRSVTR,
title = {Discrete Representations Strengthen Vision Transformer Robustness},
author = {Chengzhi Mao and Lu Jiang and Mostafa Dehghani and Carl Vondrick and Rahul Sukthankar and Irfan Essa},
url = {https://iclr.cc/virtual/2022/poster/6647
https://arxiv.org/abs/2111.10493
https://research.google/pubs/pub51388/
https://openreview.net/forum?id=8hWs60AZcWk},
doi = {10.48550/arXiv.2111.10493},
year = {2022},
date = {2022-01-28},
urldate = {2022-04-01},
booktitle = {Proceedings of International Conference on Learning Representations (ICLR)},
journal = {arXiv preprint arXiv:2111.10493},
abstract = {Vision Transformer (ViT) is emerging as the state-of-the-art architecture for image recognition. While recent studies suggest that ViTs are more robust than their convolutional counterparts, our experiments find that ViTs trained on ImageNet are overly reliant on local textures and fail to make adequate use of shape information. ViTs thus have difficulties generalizing to out-of-distribution, real-world data. To address this deficiency, we present a simple and effective architecture modification to ViT's input layer by adding discrete tokens produced by a vector-quantized encoder. Different from the standard continuous pixel tokens, discrete tokens are invariant under small perturbations and contain less information individually, which promote ViTs to learn global information that is invariant. Experimental results demonstrate that adding discrete representation on four architecture variants strengthens ViT robustness by up to 12% across seven ImageNet robustness benchmarks while maintaining the performance on ImageNet.},
keywords = {computer vision, google, machine learning, vision transformer},
pubstate = {published},
tppubtype = {inproceedings}
}
Steven Hickson, Karthik Raveendran, Irfan Essa
Sharing Decoders: Network Fission for Multi-Task Pixel Prediction Proceedings Article
In: IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3771–3780, 2022.
Abstract | Links | BibTeX | Tags: computer vision, google, machine learning
@inproceedings{2022-Hickson-SDNFMPP,
title = {Sharing Decoders: Network Fission for Multi-Task Pixel Prediction},
author = {Steven Hickson and Karthik Raveendran and Irfan Essa},
url = {https://openaccess.thecvf.com/content/WACV2022/papers/Hickson_Sharing_Decoders_Network_Fission_for_Multi-Task_Pixel_Prediction_WACV_2022_paper.pdf
https://openaccess.thecvf.com/content/WACV2022/supplemental/Hickson_Sharing_Decoders_Network_WACV_2022_supplemental.pdf
https://youtu.be/qqYODA4C6AU},
doi = {10.1109/WACV51458.2022.00371},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
booktitle = {IEEE/CVF Winter Conference on Applications of Computer Vision},
pages = {3771--3780},
abstract = {We examine the benefits of splitting encoder-decoders for multitask learning and showcase results on three tasks (semantics, surface normals, and depth) while adding very few FLOPS per task. Current hard parameter sharing methods for multi-task pixel-wise labeling use one shared encoder with separate decoders for each task. We generalize this notion and term the splitting of encoder-decoder architectures at different points as fission. Our ablation studies on fission show that sharing most of the decoder layers in multi-task encoder-decoder networks results in improvement while adding far fewer parameters per task. Our proposed method trains faster, uses less memory, results in better accuracy, and uses significantly fewer floating point operations (FLOPS) than conventional multi-task methods, with additional tasks only requiring 0.017% more FLOPS than the single-task network.},
keywords = {computer vision, google, machine learning},
pubstate = {published},
tppubtype = {inproceedings}
}
Tianhao Zhang, Hung-Yu Tseng, Lu Jiang, Weilong Yang, Honglak Lee, Irfan Essa
Text as Neural Operator: Image Manipulation by Text Instruction Proceedings Article
In: ACM International Conference on Multimedia (ACM-MM), ACM Press, 2021.
Abstract | Links | BibTeX | Tags: computer vision, generative media, google, multimedia
@inproceedings{2021-Zhang-TNOIMTI,
title = {Text as Neural Operator: Image Manipulation by Text Instruction},
author = {Tianhao Zhang and Hung-Yu Tseng and Lu Jiang and Weilong Yang and Honglak Lee and Irfan Essa},
url = {https://dl.acm.org/doi/10.1145/3474085.3475343
https://arxiv.org/abs/2008.04556},
doi = {10.1145/3474085.3475343},
year = {2021},
date = {2021-10-01},
urldate = {2021-10-01},
booktitle = {ACM International Conference on Multimedia (ACM-MM)},
publisher = {ACM Press},
abstract = {In recent years, text-guided image manipulation has gained increasing attention in the multimedia and computer vision community. The input to conditional image generation has evolved from image-only to multimodality. In this paper, we study a setting that allows users to edit an image with multiple objects using complex text instructions to add, remove, or change the objects. The inputs of the task are multimodal including (1) a reference image and (2) an instruction in natural language that describes desired modifications to the image. We propose a GAN-based method to tackle this problem. The key idea is to treat text as neural operators to locally modify the image feature. We show that the proposed model performs favorably against recent strong baselines on three public datasets. Specifically, it generates images of greater fidelity and semantic relevance, and when used as a image query, leads to better retrieval performance.},
keywords = {computer vision, generative media, google, multimedia},
pubstate = {published},
tppubtype = {inproceedings}
}
Other Publication Sites
A few more sites that aggregate research publications: Academic.edu, Bibsonomy, CiteULike, Mendeley.
Copyright/About
[Please see the Copyright Statement that may apply to the content listed here.]
This list of publications is produced by using the teachPress plugin for WordPress.