Paper in IMWUT 2021 on “Contrastive Predictive Coding for Human Activity Recognition”
Feature extraction is crucial for human activity recognition (HAR) using body-worn movement sensors. Recently, learned representations have been used successfully, offering promising alternatives to manually engineered features. Our work focuses on effective use of small amounts of labeled data and the opportunistic exploitation of unlabeled data that are straightforward to collect in mobile and ubiquitous computing scenarios. …